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1. INTRODUCTION

The aim of this paper is to compare the degree of uniform approximation
of a function!E CK[-1, 1] by algebraic polynomials of degree v, Elf), to the
degree of uniform approximation when the polynomials are restricted to
satisfy

i = I, ... , y,p~j)(t;) = j(j)(t;),

denoted Ev(f, AK ). Clearly

Elf, AK ) ~ Elf),

j = 0, I, ... , K,

"Iv ~ y(K + 1) - 1.

Our goal is to obtain an "inverse" result. A special case of our result is

(1)

unless f3 is an even integer, K < f3 :(; 2K,j is not in C2K[-1, 1] and one of the
interpolation nodes is ± 1, in which case

(2)

Our method of proof is to transform to the trigonometric case, find an
even interpolant that approximates and interpolatesf(cos 8), and then trans
form back. As is usual, the difficulty comes at the endpoints, and, in this case,
in order to transform the interpolation at the endpoints, it is necessary to
interpolate to order 2K in the trigonometric setting. The latter is what
presents the difficulty and eventually leads to the difference in estimates
(1) and (2).

Hill et al. [3] have proved a Jackson-type estimate for Elf, AK ) (see also
Beatson [2, Theorem 2.4] for a different proof and for the following state
ment of the result).
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THEORE\l j. For each It j. 2. 3..... there exists llll L,. , lind for ellch set
ofside conditions Ah Irith K • ':c It there exists (/ 1'1 , not depending on the/lInction

/ E CK[~ I. I]. such that E/r A,,) is Irell delined and satisfies

where w(f(l·) . .) is the modu/lls of continuity off' '.1 on [- j, I].

In many cases the estimate of this paper will be stronger than that of
Theorem I. For example. Timan [6, pp. 342-343] shows that it j'(x) =

(l - x2)1:4, then Elf') _C~ O{v-1 / 2), implying E.(j) = O(v-3 '2). At the same
time 1··-1W(f', I·-I) is of the exact order )/-5 '4. For this function and approxima
tion from polynomials in the set

Al =lhEC1[-I.I]:h(I} =f{l)andV(I) =f'j[):

Theorem I provides the estimate E.(j, A,,) = O(v· 5'4), whereas the result of
this paper provides the estimate Elf. A,,) = O(~'· 32).

2. ESTIMATES 1:'\ TERMS OF eig'!") WHERE g(B) = f(cos B)

Beatson [I] considered the problem of approximating a K-times continuous
ly differentiable 271' periodic function g (henceforth written g E C""[ -71'.71'])
by trigonometric polynomials satisfying Hermite interpolatory side condi
tions. Define A:. E:(g), E:(g, A;). similarly to A, , E,(f). Elf. AJ, but with
nodes of interpolation now in T. the unit circle. and uniform approximation
by trigonometric polynomials on T. Also e.(g(K)) denotes the degree of
approximation of g(K) by trigonometric polynomials of degree I' (at most)
with constant part zero. Then

THEOREM 2 [1. Theorem 2. []. For each K = l. 2. 3..... There exists an
A1" > 0, and for each set of side conditions A: a VI = VI (K, t1 , ... , tJ not
depending on g such that for anp g E C*K[ -71'.71'] E:(g. A:) is defined and
satisfies

As a corollary to this theorem we have

COROLLARY 3 [I. Corollary 2.4]. For each K l. 2, 3.... , there exists an
Itlh '> 0, and for each set of side conditiolls A, provided that ~ I < t, .< I.
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i = I, ... , y, a VI' not depending on I. such that for any f E CK[ - L I] EvCf, AK)
is defined and satisfies

where g E C*K[ -7T. 7T] is defined by gee) = f(cos e).

This corollary follows upon use of the standard transformation gee) =
f(cos &). Crucial to its proof is that for fl •.f;. E CK[ -7T, 7T] and i t i : < I, the
condition

j = 0.... , K.

is equivalent to

i = 0, ... , K;

where e2H = : cos-1 ti I ,e21 = -e21 - 1 • and gl(e) =h(cos e), g2(e) =

ficos 0).
If t i = =I is one of the interpolation nodes then the transformation of the

interpolation conditions associated with the transformation f -+ g is less
simple.

LE\f\fA 4. Let f E C[-I, I] be 2m times differentiable lrith respect to x at
x ~ I Ix = -I]. In order that the condition

(N '
d.~~ (l) = rj; J = 0, 1, .... m; [ (Pf -' . _ 'Jdx j (-I) - Sj.J - 0, .... 111.

be satisfied it is necessary and sufficient that

d2J
g j . • [d2jg

j. , .1
de2j (0) = L a2i.iri, I = 0, ... , m, de2/ (7T) = L b2/,iSi' J = 0..... 111. ,

l=O J=O_

\I'here gee) = f(cos e), the a2j.i [b2j •i ] are constants which do not depend on I.
auoo = I [booo = I], and a2i.i = (-I)i (2j) !lU2 i ). i > 0. [b2U = (~;) !fU!2 i ),

j :-c- 0.]

Remark. By the sentence 'j is 2m times differentiable at x = I" we mean
that the definition off can be extended to an open interval (a, b) containing
I so that all the derivatives up to order 2m - I are defined on (a, b) and
f I2m )(I) exists. This is equivalent to another formulation involving ordinary
derivatives on (a, I) and one-sided derivatives at I.
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Proof. Sincefis 2m times differentiable with respect to x at x I, g i~ 2m
times differentiable with respect to eat 8 ,~ 0. All odd-order derivatives of g

are zero at fI °since g is even. Writing

one finds

dl '
- -"- . SII1 tI.

dx
d~r . "IJ' d/ '
-I" . SIl1- - -d'- . cos d. etc..
t x' x

d"g ;, dj

tlQI. (0) =c I a"., -I~ (I).
[' ! 'ell t ,\

k ' . 0. 2. .... 2/11:

\\here the a';.i do not depend on f and aO,1I ~. I. For i > 0. consider the
particular function fix) ~ (x - l)i'i! with all derivatives except the ith zero
at x = I, and (d1:dx i )( I)· 1. The corresponding periodic function g is
given by the everywhere-convergent power series

1)2 8~ e6

(('(e) = (cos tI- I)' i! ~, 1- - - - - -~, ... I',li!
, 2! '4! 6!' ! ,

This series is differentiable term by term with

d"g ,
de; (0) = 0,11 = 0, ... ,2/ - I: and

(-1 )i(2i)!

i! 2'

Since i was any positive integer. it follows that

a",1 ~~ 0,

U".i =- 0,

V(I1. i) E fin, i): °< i ,c:. n < 2il

Y(II, i) E r(n. i): °< II and Il < 2i ~ 2n:

0<. k <j' 2k:

while from above a2/,.I, = (_1)" (2k) !!(k! 2"), k > 0.

This shows the necessity of the condition for x = 1. Since the (m - I)

(m -- I) lower-triangular matrix, withjth row

is invertible, the condition is also sufficient. The case x = - 1 may be treated
similarly.

Lemma 4 and the discussion above it show that iff E C2K
[ -I, 1] and the

even trigonometric polynomial i" interpolates to g(e) = f(cos e) and its first
2K derivatives at ei = I cos-It i : , i = 1..... y: then pix) = ficos-Ix) is an
algebraic polynomial interpolating to f and its first K derivatives at t;. i c=

I ..... y. Hence arguing as in [I. Corollary 2.4] Theorem 2 implies
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COROLLARY 5. For each K = I, 2, 3, ... , there exists an M!K > 0: and for
each set of side conditions AK, a VI , not depending on f E C2K[ -1, I]: such
that E,U; A K ) exists and satisfies

Irhere g E C*2K[ -77,77] is defined by gee) = f(cos e).

3. THE MAIN RESULT

In what follows let N denote the set of natural numbers. Combining some
results of Steckin [5] and Zamansky [7] we have

THEORE\1 6. For each j E N there exist constants Ai and Bj with the
follOlring properties: Let g E C*[ -77, To] and let t,. be a sequence of polyno
mials (tv is of degree not exceeding \.) approximating g \rith ! g - tv! /1on
increasing. Then

(i) L~~l nj- l g - t n: < - x; implies gil) exists and is continuous, and

I all) - t(j) ! --- '.
•., ~" -.:::::::: /'1}

L 1/'-1

1/~[,·.'21

l~ - Ttl I~ Vv > O.

(ii) " t,~j). ~ B; L:~l n j
-

1
: g - tl/- 1 • Vv.

Proof For a proof of the first statement see Lorentz [4, pp. 58-62].
To verify the second statement one starts with the Zamansky-type re

presentation (21. < IJ < 2" 1, j E /\')

"! t~j) I :: I t,~j) - t~:); + L t~~) - t~~~l'
l=l

and uses Bernstein's inequality, finding

i=2

,-; 22j L nj
- 1 ' g - tn'

n--=~

implying
I'

i t~j) . ~ B; L /1j-l. g - t"-1 !,
1/=1

where B j is a constant depending on j alone.
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Lnl\IA Let fL be a lIollnegatice integer. There exists a constant D" .
depending on fL only. and corresponding to any </1 distinct points tl •...• t:, or
[-77.77) an integer 1'1 -- llifL. tl ..... (0 ) such that: For Ii ;_, 1-'1 and arbitrary real
numbers c" there is a trigonometric polynomial Pv ofdegree' .' I' satisfring

and

1..... JI.

'Pv "D~ max ei; i.
1,/

0..... fL.

Proof Let T be the unit circle. and B I •...• B", be disjoint open sets in T
containing tl •...• to . As in [I. Theorem 2.1] we can then construct for all v
not less than some I'~ trigonometric polynomials hij , i = I, .... ill, j = 0.... , fJ

of degree at most I' with

I l/'~)
I}

Vi,. k ce. O. I. 2, ... ,

h~';\t,,) = o.

hj;\ti ) ~. o.

r - 0..... fJ-. i co.c e.

where ,\ = [1'(fL: 1)](' for I" J'~). [.] is the integral part function. and

'hij 'T'B;' 8, where <S: -+ 0 as I' -+ Y..,.

We proceed to define some polynomials H,; of degree <I' with the pro
perty that

i. e I. .... <jJ: i. r - 0..... fJ-.

Let i be arbitrary but fixed and define Hi, = L~~o b"hi.,. where the b,_ are
the solution of the equation

f""(t,, 0 0

jfh"l
f:l

h~~"(t;) h\~)(ti) 0 0 hI
(i} h~;)(ti) IM(t,)

h~~\t,) ~:,
h;n (t,)

h~-~}(ti) h~~)(t,) ...........

For all r 'C. 0..... fL. divide the rth row of the matrix and the rth element of the
product vector by rL,\'. The matrix equation becomes Ab = c. where A is
lo\ver triangular and has ones on its diagonal. Since A has determinant one a
unique solution exists. Also. since ,\ > 1. all the elements in A and care
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bounded in magnitude by (2{jL --;- 1))". Hence by Cramer's rule there exists an
E", depending on f-L alone, such that! bj : ,,;: £" ,j = 0, ... , f-L. Hence

and Hi'; riB i ,-s, S"F~ ,

j = 0, , f-L, where F" = £if-L -+- I). Since i was arbitrary this is also true for
i = 1, , 0/. Now choose VI ~ V 2 so large that SF ,,;: 1N for v;::" ~'2 • Then

'H' ~F './.
, ij Ir,B,~,,::,:: u/'fJ

for i == I, ... , o/,j = 0, ... , f-L, v ~ VI • The polynomial

<b "

PI' = I I cuH/j
i~l j~O

has the properties listed in the statement of the lemma, with D" = 2(f-L - I)F".

THEOREM 8. Let K be a positive integer. There exist constants C1 alld C2
depending on K alone with the following property: Let t1 , t2 , ... , to; , be distinct
points in [-1, I] andfECK[-I, I]. Suppose L.:~lnK-l£n(j) < CfJ and let k
be the largest integer in [K, 2K] for which L.:~1 n"-l£n(j) < CfJ. Then there
exists an integer VI = Vl(K, t1 .... , t,.) such that for v ): Vi

Ev(f, AK) ,,;: C1v-k I nHEn(j) -+- C2 I v-2j (f n2j
-

1E 7I _if))
n;;;<:[:)2] k",:~j-::;;2K .,/=1

where the term inwiring C2 may be deleted unless == 1 is one of the inter
polation nodes.

Remark. The theorem gives no information about functions in CK[-I, I]
for which L.:~1 nK- 1E n(f) diverges. However the "gap" is small. For example,
fE CK[-I, 1] implies En(f) = o(n-K) and En(f) = O(n-K(log n)-2) implies
that the series converges.

Proof of Theorem 8. Assume throughout the following that v?~ y
(K + I) - 1. If P is a polynomial of degree ~ v then Eif) = EvCf - P),
and E~(f, AK ) = EJf - P, AK ). 1n particular we may choose P so that
(f - P)(j) (t,.) = 0, i = 1.. .. , y, j = 0, ... , K. Hence it suffices to prove the
theorem when

i = 1,.... y, j =0,... , K. (3)

Case 1. One of the nodes of interpolation is ~ I. Assume without loss of
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generality that both - I and --I are node~ of interpolation. Let g(ti)-

f(cos 0). Then Elf) ~. e(gl. Let

-7T ~c. -8.... .. tI.. .. 7T

be the images of t1 •...• t.,. under the transformation iJ = arc cos(t). Note
that (3). the eveness of g, Lemma 4, and the discussion above it imply

j = 0, .... K. i == I ..... i'. (4)

For each l' let (, be the trigonometric polynomial of best uniform approxi
mation to g. By Lemma 7 there exists a Dj " depending on K alone, and a
v1(~y(2K - I) - I) depending on K and the nodes of interpolation, such that
for v ~; 1'1 there is a trigonometric polynomial of degree <I' satisfying

p~,j)( =8;) -- (g - tf')(I8;). ° i
.. k. i I. ... , y.<::.::

(5)
p,b)(=(J;) = _t,(2i

l
( ±8;). k <. 2" 2K. i E {I, y: ..I

and having all other derivatives up to order 2K zero at the nodes, with

;..
I 1'-' gl'J - t,l,)
,~I

- I j/-2i t,12il ).

i, -;?j~2,.

Using the estimates of the quantltles on the right-hand side above from
Theorem 6 we find there exist constants A I and C2 depending on K only
such that

04 11'-." I 1/,-LEnet) - C2 I /,-21 I 1/2, -IE,,_l(/)'
f/ .,)[1' ':!l I,. 2i"';':!h I

(6)

Now consider the trigonometric polynomial (t, - p,.). Since k c': K. (4)
and (5) imply

(t,,- p,,)I') (=8;) .~ 0.

«(. - p,,)('!.)) (=8;) = 0,

j = 0..... K.

K < 2j ,; 2K.

- L .... iJ.

iE{l,y).

Since the nodes of interpolation are symmetric about zero the even part
(t" - p,.) of this trigonometric polynomial also satisfies these conditions. In
addition all the odd order derivatives of (I. A) vanish at 0 and =7T. Thus

i - 0..... K.(i, - p,,)UI( =0;) ~= O.

(f" - P,,)I/I( =8;) ~= O. K

I ..... y.

2K. iE{Ly;.
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Since g is even and using (6)

I g - (t., -- 'A) ~ ~ g - (tv + p,)1 ~- g - t,_ - I P.- i

205

I-

,C::; C1v-1. I /l1.-l£n(/) --:- c~ I v-2 , I /l2 J-lEn _ 1cn.
t.=[: ;!] 1,,2;...:::2/\ tI=l

where C1 , C2 depend on K only.
It remains to transform back to the algebraic case. Equation (7), Lemma 4,

and the discussion immediately preceding it show that the algebraic poly
nomial rv given by r.(x) = (tv .-L pJ (arc cos x) interpolates to f and its first K

derivatives at t1 , ... , t_;. Also ,.I - rv :'[-1.1] = I. g - (f" - 'A)ii[-:r."l _ There
fore the sequence of polynomials {rV}:"l provides the estimate of the present
theorem.

Case 2. None of the interpolation nodes is = I. In this case the Theorem is
an obvious corollary of Theorem 2 and Theorem 6.

The most interesting special case is

COROLLARY 9. IffECK[-I, I] then

(8)

unless f3 is an even integer, K < f3 ~-;; 2K,j is not in C 2K [ -I, I] and one of the
nodes ofinterpolation is == I in which case

(9)

Proof. If f3 ~ K the result is a corollary of Theorem I. If[ E C2K[ - I, I],
or =I are not nodes of interpolation, the result follows from a combination
of Corollary 5 and Corollary 3, respectively, with the estimates of Theorem
6(i)_ If f3 > K is not an integer then the result is immediate from Theorem 8.

It remains to consider the case of f3 > K, an integer. If f3 :?o 2K - I then
k = 2K and the result is immediate from Theorem 8. If K < ,8 ~ 2K then
\\e may assume, without loss of generality, that f3 is the largest integer in
(K,2K] for which £.(f) = O(v-B). Then by Theorem 6(i) and well-known
Jackson theorems it follows that f3 ?-:: k. Indeed since L n-2 converges either
f3 = k or ;3 = k - I. The first term on the right-hand side of the inequality
of Theorem 8 will be o(v-B) if f3 = k, and O(v-S) if f3 = k --:- I. The second
term on the right-hand side of this inequality will be O(v-a), unless f3 =
k - I = 2j ~ 2K, in which case it will be O(v-Slog.'). This concludes the
proof.

Remarks. It is not known if the estimate (9) is sharp. It is clear that if
the interpolation at the endpoints is restricted to orders < [K i2] then the
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last term in the estimate of Theorem 8 would not occur O~

there would be no exceptional case.
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