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1. INTRODUCTION

The aim of this paper is to compare the degree of uniform approximation
of a function fe C¢[—1, 1] by algebraic polynomials of degree v, E,(f), to the
degree of uniform approximation when the polynomials are restricted to
satisfy

pONE) = fOt),  P=1l.,y, j=0,1.,k,
denoted E(f, A,). Clearly
E(f,A) Z E(f), YwZ=yk+1) -1

Our goal is to obtain an ““inverse” result. A special case of our result is
E(f) = O(:~®) = E(f, 4) = O(v®) ()]

unless B is an even integer, k < 8 < 2k, fis not in C*[—1, 1] and one of the
interpolation nodes is 41, in which case

E(f) = O(~") = E(f, 4) = O(+* logv). @

Our method of proof is to transform to the trigonometric case, find an
even interpolant that approximates and interpolates f(cos §), and then trans-
form back. As is usual, the difficulty comes at the endpoints, and, in this case,
in order to transform the interpolation at the endpoints, it is necessary to
interpolate to order 2« in the trigonometric setting. The latter is what
presents the difficulty and eventually leads to the difference in estimates
(1) and (2).

Hill et al. [3] have proved a Jackson-type estimate for E(f, A4,) (see also
Beatson [2, Theorem 2.4] for a different proof and for the following state-
ment of the result).
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THEOREM 1. For cach k- 1.2.3..... there exists an L, , and for cach set
of side conditions A, with k -+ k there exists a vy , not depending on the function
Je C{—1, 1]. such that E(f. A,) is well defined and satisfies

E(f A =~ Lo Fo(f*, v1), Ve 22y,

where w(f*), *) is the modulus of continuitv of f1'? on [—1, 1].

In many cases the estimate of this paper will be stronger than that of
Theorem 1. For example. Timan [6, pp. 342-343] shows that it f'(x) =
(1 — x®14, then E(f") = O(v12), implying E(f) = O(v—32). At the same
time rtw(f’, v71) is of the exact order »—* . For this function and approxima-
tion from polynomials in the set

Ay =the CH—=1 1] i(1) = f(1) and I (1) = /" (L)

Theorem | provides the estimate E(f, A,) = O(v*1), whereas the result of
this paper provides the estimate E(f. 4,) = O~ 32).

2. ESTIMATES IN TERMS OF e,(g"') WHERE g(f) = f(cos 6)

Beatson [1] considered the problem of approximating a s-times continuous-
ly differentiable 27 periodic function g (henceforth written g e C*[—mn.7])
by trigonometric polynomials satisfying Hermite interpolatory side condi-
tions. Define A*. EX(g), EX(g, A7), similarly to A, , E(f). Ef, 4,), but with
nodes of interpolation now in 7. the unit circle. and uniform approximation
by trigonometric polynomials on 7. Also e¢,(g'’) denotes the degree of
approximation of g™ by trigonometric polynomials of degree v (at most)
with constant part zero. Then

THEOREM 2 [I, Theorem 2.1]. For each « =1.2.3..... There exists an
M, > 0, and for each set of side conditions A¥ a v =v,(x, 1, ,...,t,) not
depending on g such that for any ge C*[—m. 7} EXg. AY) is defined and
satisfies

ENg A < Mae(g™),  Wv 2.
As a corollary to this theorem we have

CoroLLARY 3 [I. Corollary 2.4]. For each « 1.2,3...., there exists an

M, =0, and for each set of side conditions A, provided that —1 <1, < 1.
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i =1l,..,y, av, not depending on f, such that for any fe C<[—1, 1] E(f, 4.)
is defined and satisfies

E;(.fa AK) ‘\< lwwv_Kev(g(K),)» VV :’\”: ST

where g € C*[—x. 7] is defined by g(0) = f(cos 6).

This corollary follows upon use of the standard transformation g(4) =
f(cos 6). Crucial to its proof is that for f; . /€ C{—w, w] and ; ¢, < 1, the
condition

da'f d'fs
dx’ (t) = dxi

(1), Jj=0..,k

is equivalent to

d’g, _ d'g, d'gy dig, .
Wﬁ_ (021') de, (071) de, (0"1 1) de, (9’1 1) ] = On'

vy K
where 6, ; = 'cosHt; |, 0y = —0,_,. and gi(0) = fi(cos 0), gy(f) =
So(cos 0).

If t; = =-1 is one of the interpolation nodes then the transformation of the
interpolation conditions associated with the transformation f— g is less
simple.

Levvia 4. Let fe C[—1, 1] be 2m times differentiable with respect to x at

x = lx = —1). In order that the condition
d'f . . af o .
di () = j=0,1,....m; [dx" (=) =35,:=0,.. m.]

be satisfied it is necessary and sufficient that

L) =Y ayaris [ — Oyms | LB (my — Zb = 0.....m:
d0% — Z dg;iFiy | — U, mg 02] m) = 25,0 1._] = U,.... H'I.»,

where g(0) = f(cos 8), the ay; ; [by; ;] are constants which do not depend on f,
dy,o = 11bo,g = 1], and as; ; = (—1Y (2))M(712). j > 0. [by;; = (2)V(j!127),
Jj =03

Remark. By the sentence “fis 2m times differentiable at x = 1” we mean
that the definition of f can be extended to an open interval (a, b) containing
1 so that all the derivatives up to order 2m — 1 are defined on (a, b) and
F@m(1) exists. This is equivalent to another formulation involving ordinary
derivatives on (g, 1) and one-sided derivatives at 1.

640:28/3-2
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Proof. Since fis 2m times differentiable with respect to x at v 1, g1s 2mr
times differentiable with respect to # at ¢ — 0. All odd-order derivatives of g
are zero at # . 0 since g is even. Writing

A dg A
;{? = — 7\— sin H_ :@‘2 = m’l sin 6’ — 7,-‘\‘* cos 4. etc..
one finds

d g - d’f

o = L s 2 bR

7o (0) Z“ ay., e (1, k 0.2.....2m:

where the «, ; do not depend on f and q,, = 1. For i/ >~ 0. consider the
particular function f(x) = (x — 1)/ with all derivatives except the ith zero
at x = 1, and (df:dx)(1) -- 1. The corresponding periodic function g is
given by the everywhere-convergent power series

2(8) = (cos — 1) i! — (__'f-_*_:, it

This series is differentiable term by term with

drg ) d*g (— D!
“8& - - 25— 1 : =
pr% 0)=0,n=0,.,2/ —1; and pTs (0 B .
Since / was any positive integer, it follows that
a,,, =0. Yin.iyef{(n, i): 0 <i="n < 2j}
= dy,,; = 0, Y(n,)e{(n.i):0 < nand n < 2i << 2n|

=y, =0, 0 < k < j = 2k

while from above a,; , = (—D* (2K)'i(k! 2¥), k > 0.
This shows the necessity of the condition for x = 1. Since the (a - - 1)
{(m —- 1) lower-triangular matrix, with jth row

00,

v

Aj oty 7 Qg

is invertible, the condition is also sufficient. The case x = — 1 may be treated
similarly.

Lemma 4 and the discussion above it show that if fe C*[—1, 1] and the
even trigonometric polynomial 7, interpolates to g(0) = f(cos 6) and its first
2i derivatives at 8; = 'cos~t, . i = l...., v: then p(x) = i(cos™x) is an

algebraic polynomial interpolating to f and its first « derivatives at t;. i ==
l..... y. Hence arguing as in [l. Corollary 2.4] Theorem 2 implies
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COROLLARY 5. For each « = 1,2,3,..., there exists an M, > 0; and for
each set of side conditions A, , a v, , not depending on fe C*[—1, 1]: such
that E(f, A,) exists and satisfies

Ev(f~ AK) < IW2KV72K€u(g(2K))< VV 2 Vi

where g € C**[—a, 7] is defined by g(8) = f(cos 0).

3. THE MAIN RESULT

In what follows let N denote the set of natural numbers. Combining some
results of Steckin [5] and Zamansky [7] we have

THEOREM 6. For each je N there exist constants A; and B; with the
Sollowing properties: Let g € C*[—m, =] and let t, be a sequence of polyno-
mials (¢t, is of degree not exceeding v) approximating g with 'g — t,| non-
increasing. Then

- o . - . i . - .
N X.ant g —1t,' < — x implies g exists and is continuous, and
. o
- 9 < A4; Z g —u, L Yv > 0.

(i) "t < B Y, g =t

Proof. For a proof of the first statement see Lorentz [4, pp. 58-62].
To verify the second statement one starts with the Zamansky-type re-
presentation (28 <l v << 2" 1, je N)

() (F1

A
AL I A LR S AU 1 PR A AL

and uses Bernstein’s inequality, finding

(2t — (W g—1.] =2 g—1t, — g—1t,)

21

k d 2
<Y 2ilg—t,, <4 [2“’*” Y g Lia I]

n=2i=2oy

-~

ing

||
o

2;{—1
28y it g —1, .
n-=2

implying

M
| 7:]) . X B z mleg — it L
n=1

where B; is a constant depending on j alone.
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LemMa 7. Let p be a nonnegative integer. There exists a constant D,
depending on u only. and corresponding to any & distinct points ty ..., t, 0/'
[—7. ) an integer vy — v(u. iy ... ty) such that: For v >: v, and arbmar_l real
numbers ¢,, there is a trigononietric polynomial p, of degree -~ v satisfving

pory ey A e i Ovees pe
and
“py - D omax ¢
1!
Proof. Let T be the unit circle, and B; ..... B, be disjoint open sets in T
containing f, ..... . As in [l, Theorem 2.1] we can then construct for all v

not less than some », trigonometric polynomials /,;, i = 1,....4,j = 0,...,u
of degree at most » with

R <t k0,12,
B ro-0a,u i=ec.
(») . . L Gleoy oy
() = ro—j and A7) == AL
where A = [v-(u -~ DN~ 1 for v = 1,), []is the integral part function. and
e, - B where o0, >0 as v — .

We proceed to define some polynomials H,; of degree v with the pro-
perty that

HiXe) = vioode laodt o jor =0l

1N

Let i be arbitrary but fixed and define H,, == Y._,b.,h;.. where the b, are
the solution of the equation

() 0 0 by 0
PGy hPa) 0 0 b, 0
W) RS B N
hfﬁl(r ) /;‘“’(r R :ff)(f ) b, 0
For all » -= O..... u. divide the rth row of the matrix and the rth element of the

product vector by r!A”. The matrix equation becomes Ab = ¢, where A is
lower triangular and has ones on its diagonal. Since 4 has determinant one a
unique solution exists. Also. since A ™~ 1. all the elements in 4 and ¢ are
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bounded in magnitude by (2(u - 1))*. Hence by Cramer’s rule there exists an
E, , depending on p alone, such that | b, < E,,j =0,..., ». Hence

:| H[j -!Br < Fu and Hz',)' T\B; T:\ BF

vha s

Jj =0,.., p, where F, = E,(u + 1). Since i was arbitrary this is also true for
1,..., . Now choose v, = v, so large that §, < 1/ for v == v, . Then

CHile, < Fu, CHi i, < FLY

fori==1,..,4,j = 0,...; u, v = v; . The polynomial

=

i
Me
M=
2
=

il
B

B

17

has the properties listed in the statement of the lemma, with D, =2(u — 1) F,,.

THEOREM 8. Let « be a positive integer. There exist constants Cy and C,
depending on « alone with the following property: Let t; , ts ,..., L, , be distinct
points in [—1, 1] and fe C[—1, 1]. Suppose 3 ,_, * E.(f) < o and let k
be the largest integer in [k, 2«] for which 3 ,_, n* E(f) < oo. Then there
exists an integer v; = vi(x, ty ...., t,) such that for v 2> v,

E(fA) < Cot S a BN+ G Y (L gL ()

n>[+/2] fe2jg2x \n=1

where the term involving C, may be deleted unless =1 is one of the inter-
polation nodes.

Remark. The theorem gives no information about functions in C*[—1, 1}
for which ¥ ,,_, n~1E,(f) diverges. However the “gap” is small. For example,
fe C[—1,1] implies E(f) = o(n~) and E,(f) = O(n~~(log n)~2) implies
that the series converges.

Proof of Theorem 8. Assume throughout the following that v =+
(« + 1) — L. If P is a polynomial of degree < v then E(f) = ELf — P),
and E(f, A) = E(f— P, AK) In particular we may choose P so that
(f—P)()=0, i=1..+, j=0,.,« Hence it suffices to prove the
theorem when

o) =0, i=1..y, j=0..,xk Q)

Case 1. One of the nodes of interpolation is 1. Assume without loss of
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generality that both -1 and --1 are nodes of interpolation. Let g(¢) —
f(cos 8). Then E(f) — E~(g). Let

el e iy B =0 Uy

be the images of #; ..., t, under the transformation # -. — arc cos(t). Note
that (3). the eveness of g, Lemma 4, and the discussion above it imply

g =0) =0. [ =0,ie il ()

For each » let ¢, be the trigonometric polynomial of best uniform approxi-
mation to g. By Lemma 7 there exists a D,, depending on « alone, and a
vi(Zy(2k — 1) — 1) depending on « and the nodes of interpolation, such that
for v =. v, there Is a trigonometric polynomial of degree v satisfying

PIN—0) = (g — 1)), O <)<k i Lo,y )
, _ (3)
(b)) = — (40, Kk =22f+ 2x, iell, yl

and having all other derivatives up to order 2« zero at the nodes, with

P Ds(E(N) X g = Y v g )
=1 Ao2jL2m
Using the estimates of the quantities on the right-hand side above from
Theorem 6 we find there exist constants 4, and C, depending on « only
such that

p Apt S wEL) —C Y Y mrE, (f)(6)
" A 1

FUETREN

Now consider the trigonometric polynomial (r, — p,). Since k .- «. (4)
and (5) imply
(r, - pI) (=0, — 0. J =0..... K, i -1 2
(t, — pY¥ (=0, =0, Kk < 2f < 2k, ietl,yl.

Since the nodes of interpolation are symmetric about zero the even part
(£, — p,) of this trigonometric polynomial also satisfies these conditions. In
addition all the odd order derivatives of (. -- p,) vanish at 0 and *-=. Thus

(i, — p)(=0,) = 0. j — 0..... k., @ 1. . ,
(7)
(£, — p(=8;) = 0. K- f 2 i=yllyy.
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Since g 1s even and using (6)

lg—GE—p) <ig—(+pl<.g—1 —1p|
= Cpt Z W LE(f) — Gy Z p Z ¥ E, ().
r=[: 2] L 2j22u n=1
where C, , C, depend on « only.

It remains to transform back to the algebraic case. Equation (7). Lemma 4,
and the discussion immediately preceding it show that the algebraic poly-
nomial r, given by r,(x) = (£, - p.) (arc cos x) interpolates to fand its first «
derivatives at #,,..., ¢, . Also , f— r, 'ty =1 & — (f, — B.)ii—».n1 - There-
fore the sequence of polynomials {r,};2, provides the estimate of the present
theorem.

Case 2. None of the interpolation nodes is —1. In this case the Theorem is
an obvious corollary of Theorem 2 and Theorem 6.
The most interesting special case is

COROLLARY 9. If fe C<[—1, 1] then
E(f) = O(w=?) = E(f. A,) = O(v®) (8)

unless B is an even integer, x << 8 << 2k, f is not in C*[—1, 1] and one of the
nodes of interpolation is =1 in which case

E(f) = O(®) = E(f, 4) = O(= log v). (9)

Proof. If B <« the result is a corollary of Theorem 1. If fe C*[—1, 1],
or —1 are not nodes of interpolation, the result follows from a combination
of Corollary 5 and Corollary 3. respectively, with the estimates of Theorem
6(1). If B > « is not an integer then the result is immediate from Theorem 8.

It remains to consider the case of 8 > «, an integer. If 8 = 2« — | then
k = 2« and the result is immediate from Theorem 8. If x << 8 < 2« then
we may assume, without loss of generality, that j is the largest integer in
(k. 2«] for which E,(f) = O(v~%). Then by Theorem 6(i) and well-known
Jackson theorems it follows that 8 > k. Indeed since Y n~* converges either
B =k or 8 =k — 1. The first term on the right-hand side of the inequality
of Theorem 8 will be o(v~#8) if B = k, and O(v—*%) if B = k — 1. The second
term on the right-hand side of this inequality will be O(v—?), unless 8 =
k — 1 = 2j < 2k, in which case it will be O(v=?logv). This concludes the
proof.

Remarks. 1t is not known if the estimate (9) is sharp. It is clear that if
the interpolation at the endpoints is restricted to orders =< [«/2] then the
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al

last term in the estimate of Theorem 8 would not occur (8 - «) and hence
there would be no exceptional case.
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